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Nonlinear Evolution of Two-Magnetofluid Instability 
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The nonlinear surface instabifity of a horizontal interface separating two mag- 
netic fluids of different densities, magnetic permeabilities, and velocities, includ- 
ing surface tension effects, is investigated. The magnetic field is applied along the 
direction of streaming. It is shown that the evolution of the amplitude is 
governed by a nonlinear Ginzburg-Landau equation with the use of the 
multiple scale method. When the influence of streaming is neglected, the 
nonlinear diffusion equation is obtained. Further, it is shown that a nonlinear 
Schr6dinger equation is obtained in the absence of gravity. The various stability 
criteria are discussed from these equations, of both Rayleigh-Taylor and 
Kelvin-Helmholtz problems, both analytically and numerically and the stability 
diagrams are obtained. Obtained also are the stability properties of solitary 
solutions to the Ginzburg-Landau equation in the case of constant surface 
tension. 

1. I N T R O D U C T I O N  

As described by Rosensweig (1985) and  Zahn  and Rosensweig (1991), 
magnet ic  fluids are synthesized by colloidally suspending solid magnet ic  
particles o f  subdomain  size. The  particles do not  separate  out  f rom the 
liquid carrier,  as they are kept  in cons tant  agi ta t ion by  r a n d o m  thermal  
molecular  mot ion .  Magnet ic  fluids are described by a magnet ic  permeabi l -  
ity larger than  the magnet ic  permeabi l i ty  o f  free space. There  is a magne-  
t izat ion force on the magnet ic  fluid in the presence o f  a nonun i fo rm 
magnet ic  field whereby high-permeabi l i ty  mater ia l  is a t t rac ted  to high- 
magnetic-field regions. 

A magnet ic  fluid behaves like a fluid possessing magnet ic  proper t ies  in 
an applied magnet ic  field. By subjecting magnet ic  fluids to nonun i fo rm 
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magnetic fields, it is possible to control the liquid pressure, the shape of the 
fluid interface, and the flow pattern. 

In order to apply these features of magnetic fluids to fluid engineering, 
many proposals have been made to develop new devices which can utilize 
such magnetic fluids. Zelazo and Melcher (1969) examined theoretically as 
well as experimentally the plane wave propagation for two superposed 
magnetic fluids in the presence of a tangential field, and demonstrated that 
the magnetic field exerts a stabilizing influence on waves. In their investiga- 
tion of the non-linear Kelvin-Helmholtz instability in magnetic fluids, 
Malik and Singh (1986) showed that the wave train solution of constant 
amplitude is unstable against modulation if the product of the group 
velocity rate and the nonlinear interaction coefficient is negative. However, 
in the studies mentioned above, the surface tension taken was constant. 

The effect of the variable surface tension on the motion of the fluids 
has been extensively treated by many authors. The linear analysis of the 
surface tension effect was presented by Pearson (1958) and the conditions 
for the onset of the instability were derived. Levich (1962) gave a more 
complete discussion, showing how the variation of surface tension is fixed 
by the variation of surfactant concentration around the interface which is 
fixed by the balance between adsorption and desorption of the surfactant 
from the liquid, and convection and diffusion along the interface. Charac- 
terization of surfactant adsorption at fluid-fluid interfaces with respect to 
both the equilibrium and dynamic behavior is essential to a complete 
understanding of mass transfer. Many important phenomena, such as 
interfacial turbulence, thin-film stability, and retardation of drop motion, 
are consequences of the fact that the surface tension varies with the 
interfacial concentration [see, for example, Scriven and Sternling (1960) 
and S~rensen (1978)]. 

Weakly nonlinear aspects of the Marangoni effect, gradient in surface 
tension, based on amplitude expansions were studied by Sivashinsky 
(1982), Funada (1987), Elhefnawy (1990), and Oron and Rosenau (1992). 
Those studies differ from each other in asymptotic representations of the 
independent and the dependent variables and lead to different evolution 
equations describing the behavior of the interface in different parametric 
regimes. 

In this presentation, we study the nonlinear surface instability at the 
interface of two semi-infinite superposed magnetic fluids, taking into ac- 
count the effect of the surface tension. The fluids are moving with uniform 
speeds parallel to the common interface and subjected to the tangential 
magnetic field. In Section 2, we formulate the problem and derive the 
characteristic equation for the first order and the solvability conditions for 
the higher orders, using the multiple-scales method. 
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The linear stability theory is studied for both Rayleigh-Taylor and 
Kelvin-Helmholtz problems. From the second- and third-order theories 
developed in Section 3, we have derived a nonlinear Ginzburg-Landau 
equation. From this equation, the various stability criteria are obtained for 
both Rayleigh-Taylor and Kelvin-Helmholtz problems. Finally, the sta- 
bility properties of solitary solutions in the case of constant surface tension 
are discussed in Section 4. 

2. THE BASIC EQUATIONS AND THE 
MULTIPLE-SCALES METHOD 

Consider two inviscid, incompressible, superposed magnetic fluids 
separated by an interface z = 0. The half-space z < 0 is occupied by the 
magnetic fluid of density Pl and magnetic permeability #t, whereas the 
region z > 0 contains the magnetic fluid of density P2 and magnetic 
permeability #2. The lower and the upper fluids are streaming with veloc- 
ities Ut and U2 along the positive x direction, respectively. The magnetic 
field Ho acts along the direction of the flow. Both fluids are assumed to be 
homogeneous and the motion in them is irrotational. The analysis takes 
into account the surface tension a as well as a gravitational force per unit 
mass g acting normal to the interface and directed in the negative z 
direction. We assume that the surface tension is a function of the adsorp- 
tion F, i.e., tr = a 0 - ~ ( F -  F0), where F 0 > 0 is the unperturbed adsorp- 
tion, ao is the surface tension at F0, and ~ = - d a / d F  > 0 is the negative 
rate of change of surface tension with adsorption. 

The basic equations which govern the system are 

V2q~7 = 0 ( j  = 1, 2) (1) 

v= ,j = 0 ( j = 1, 2) (2) 

where j = 1 denotes the region z < 0, and j = 2 the region z > 0. Here ~b 
and @ are the velocity potential and the magnetic potential, respectively. 

Since the motion must vanish from the interface, we must have 

vCc~j, r "-",0 as lz[ + 

The kinematic condition at the interface is 

&/ dn dq~j . &/d~j 0 0 d ~ j = 0  at z = n ( x , y , t )  (3) 
a--i+V Ox az ay 

where n(x, y, t) stands for the elevation of the interface. 



444 Elhefnawy 

The mass balance condition at the interface is 

dF F da F 02~bl [(~2F ~2F\  
-~ +2a--& Oz 2 - - D t ~ x 2 + 0 - - ~ ) = 0  at z=q(x ,y , t )  (4) 

where a --- 1 + (Otl/Ox): + (aq/0y) z is the surface metric determinant and D 
is the diffusion coefficient. 

The continuity of the normal and tangential components of the 
magnetic field across the interface requires 

I~Hl. = Hz. at z = q(x, y, t) (5) 

H .  =/-/2, at z = tt(x, y, t) (6) 

Since the normal stress across the interface must be continuous, we 
obtain 

gF-I-gll(i~176 -I-U1 (OxJ -t02 - I-U20x] 

1 d (O~)il 
+ 7 L~ - P~(v@~)~] + r 

t Oz } 

+ r(v~)  2 g,-a-7~+v,a-~} 
- ( a o - ~ P ) [ 1 '  /'(9r/~2' [oil~2i-ai:fozllr" +(~ 

o.o. 02. r l + (O .Y l l  
20x ay Oxay + a-~ L \ ~ x )  J J  

~1 -- ]"12 
- ~ (H#,+#H~.)  at z= t / (x ,y , t )  (7) 

where # = #l/#2 and F = F - F0. Here Hn and Ht represent the normal and 
the tangential components of the magnetic field, respectively. 

As the boundary conditions (3) - (7)  are given at the free surface 
z = t/(x, y, t), one needs prior information about  q(x, y, t). To surmount 
this difficulty, we use Maclaurin's expansions about  z = 0 of the physical 
quantities appearing in equations (3)-(7) ,  thereby reducing the conditions 
at the unperturbed levels z = 0. 

To obtain the asymptotic solution to the system of equations (1)- (7) ,  
we introduce the three sets of slow variables 

(Xn, Yn, tn) = 8n( X, Y, t), n = 0, 1, 2 (8) 

where ~ is a small dimensionless parameter representing the size of the 
perturbations. The method we use is that of  multiple scales, which relies on 
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the fact that the wave amplitude is being modulated slowly in space and 
time. We assume that 

3 

(b(x, y, t) = ~ ,~nf~n(XO, X1, X2, YO, Yl ,  Y2, to, tl, t2) + O(e 4) (9) 
n = l  

3 

q / ( x , y , z , t )=  ~ entF,,(Xo, Xl ,x2,Yo,yl ,y2,  z, to, 4 , t 2 )+O(e  4) (10) 
n = l  

where �9 can be either of the physical quantities r/ or I'; while ~F can be 
either q~j or ~kj; we take into account that q~ is expanded in the form 

th = A(x,,  xz, y, ,  Y2, t, , t2) exp[i(KxXo + Kyyo - Wto)] 

+ g(x l , x2 , y l , y z ,  4,t2) exp[- i (Kxxo+ Kyyo-Wto) ] (11) 

The bar denotes the complex conjugate; A is a slowly varying ampli- 
tude to be determined later by the solvability conditions; (K~ + K 2) 1/2 = K 
is a wavenumber which should be a real and positive number; and w is the 
frequency of the disturbance. 

The expansions (8)-(10) are uniformly valid for - o o < x < o o ,  
- ~  < y < ~ ,  and 0 < t < oo. On substitution in equations (1)-(7),  we get 
the linear and the successive nonlinear partial differential equations of the 
various orders. The solution of the problem in any order can be deduced 
with knowledge of the solutions of all the previous orders. The procedure 
is straightforward but lengthy and it will not be included here. The details 
are available from the author and are outlined by Nayfeh (1976). 

The first-order problem leads to the characteristic equation 

F(w, Kx, Ky) =g(P, --P2) +aoK~- (Fo+~ '~ ) (  w -  K x U 1 )  2 

p: gFoK(w - Kx U1) 
- ~ (w - I L u ~ )  2 + w - KxU~ + i K 2 D  

+ I4~I(~(~,  - m )  2 = 0 (12)  
4rcK(#l + ~t2) 

which is similar to the results of Rosensweig (1985) in the limit when Fo is 
neglected. 

If we carry on the problem to the second-order set of equations, we 
may substitute the solutions of the first-order problem into the second- 
order one and solve the resulting equations. The solutions yield the 
solvability condition 

~F ~A ~F ~A ~F OA 
-~ + - -  = 0 ( 1 3 )  

Ow Ot~ OKx ~x I OKy Oy I 



446 

while the third-order problem implies the condition 

( OFOA OF aA c3FOA'~ 

i Ow Ot2 "~ OK, Ox 2 + OK? Oy2/I 
1 O2FO2A 02F t92A 

+ 
20w 2 0t~ OwaK~ Ox~ta 

~2F 02A 1 $2Fa2A a2F a2A 

-- OwOK e Oy, Oh ! 20K~ OxZ~ ! OKxOKy OxlOy, 

1 OZF O2A 
+ = JA z~ (14) 

2 or, 

where 

J = 2A{(pl + 3FoK)(w - K: U,) 2 - p2(w - Kx Uz) 2 - gFo Kz 

1 2 
+ -~gFoK (w - Kx U1)(?, + 4?2 + 2:3) 

- FoK(w - Kx U,)(yu + 273)[ aK2 + (w - K x U 1 )2] 

KZxH2o(it u _ it , )3)  __.. 
-t 4 -~2 .~ -~ -~  ~ + 2Klp,(w - KxU1)E + p2(w -- KxU2)2] 

3 4 1 2 KK2xgo2(itl  - It2) 2 
- ~ a o K  + ~ F o K  (w -K~U1)  2 -  2rffit, +it2) 

+ FoKE(w - K~ U1)3(2y, + 3?3) 

+ roKZ(w - K~ V l ) ( Y l  - -  ~u)[aK2 + (w - K,, U 1 ) 2 ]  

+ gFoK3y~(w - Kx U1) u - gFoK3(w -- KxUI)(8.5?1 - 2?2 + ?3) (15) 

with 

{P2( w - K x U 2 )  2 - (.~ + 3FoK)(w - K x U 1 )  2 -gFo?2KU(w - KxU,) A 

+ Foy,K(w - KxU,)[gK + ~K 2 + (w - KxU1) 2] 

1 2 K~HEo(it2- itl)3~ / ~ , ' ~  +~gVoK- 4-4~2~--~1- ~ . ; / r t z w ,  2K~,2Ky) (16) 

~1 = (W - - g x U  1 + iKZD)- '  

~2 = (w - K,, U, + 2iK2D) - ' 

Y3 = (w - Kx U, - iK2D) - '  

Elhefnawy 
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It is interesting to observe that equation (14) has a singularity in A for 
F(2w, 2K~, 2Ky)= 0. This corresponds to the case of second harmonic 
resonance, where the fundamental resonance cannot exist without the 
presence of its first harmonic. We should remark that the analysis given in 
this paper is not valid in the neighborhood of  such resonance. 

3. DERIVATION OF THE GINZBURG-LANDAU EQUATION 

We shall study equation (14) by the nonvanishing of  the first deriva- 
tives of F. In this case, equation (13) can be rewritten as 

where 

OA Ow OA dw OA 
-t + - -  = 0 (17) 

Ot 1 OK x Ox 1 OKy Oy 1 

Ow OF/OF Ow OF/OF 
OK:r OK~ ~w and OKy OKy O'--W 

Substituting (17) into (14), we obtain the following partial differential 
equation using the original variables x, y, and t: 

t-~-7; +-~-ff~-ff-~ + 2 OKxOKyOXOy4-~--i~Svvdy2j= - J A2A (18) 

where 

Ow t), T = ezt 

By introducing the transformations ~ = lX + m Y and z = 7', where l 
and m are arbitrary constants, we reduce equation (18) to 

OA = (p~ + iP~) 0 2A 0--~ ~ + (Qr + iQ,)A 2X (19) 

where 

and 

i ( 02w 02w 
Pr + iP, = ~ 12-f-~xx + 21m dKxdKy ~- mZ ~K~ J 

OF 
Q" + iQi = iJ Ow 

Equation (19) is the well-known Ginzburg-Landau equation. It is also 
known that the solutions of equation (19) are stable if and only if (Lange 
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and Newell, 1974) 

and 

PrQr + PeQi < 0 (20) 

Qr < 0 (21)  

Landman (1987) studied a particular class of solutions of this equation of 
the form 

A(~, z) = e -in~f(~ _ cz) 

which he called quasisteady solutions, and found that their spatial variation 
may be periodic, quasiperiodic, or apparently chaotic. Also, Rotenberry 
and Saffman (1990) used equation (19) to study the weakly nonlinear two- 
dimensional evolution of a disturbance in a channel with compliant walls 
for Reynolds number near its critical value. 

We now return once more to equation (19) to study the following two 
cases of physical interest. 

3.1. The Rayleigh-Taylor Instability 

The classical Rayleigh-Taylor problem (no mean flow) treats the 
stability of a dense fluid overlaying a less dense fluid. 

The following simplifications are imposed on equations (12) and (19), 
corresponding to the absence of mean flow (U1 = U2 = 0) and the presence 
of a tangential field. 

The linear dispersion relation, which is obtained from equation (12), is 

ao(-- iw)  3 + a l ( - - i w )  2 + a2(--iw) + a 3 = 0 (22) 

where 

with 

ao = Pl + P2 + FoK 

al = DK2ao 

a2 = gK(p~ - P2) + gFo Kz + B ~ K  2 + aoK 3 

a3 = DK2[gK(pl  - P2) 2 2 + BoKx  + go K3] 

So = 2 Ho 
4rt(/~2 +/~l) 

We know from the Routh-Hurwitz criterion that the necessary and 
sufficient conditions for stability are 

al > O, a2 > O, a3 > O, ala2/aoa3 > 1 (23) 
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since a0 is always positive. Therefore, the system is linearly stable if and 
only if Bo > Be, where B C is given by the relation (for K = Kx)  

B] = [g(P2 - P, ) - ~r0K2] K (24) 

We observe that the magnetic field has a stabilizing influence on the 
wave motion. These theoretical results were first obtained and confirmed 
experimentally by Zelazo and Melcher (1969) (see also Rosensweig, 1985). 

In the nonlinear theory, equation (19) is reduced to the nonlinear 
diffusion equation 

c~A ~2A 
9-7 = P~ - ~  + QrA 2~ (25) 

where 
D 

Pr = g3F~ {g2F2(3aoK + B2)  

+ [gFo - K2D2(pl  + P2 + FoK)](2~roK + B2) 2} 

2 1--1~) 

x [g(P2 - P , )  + 2a0K:] - ~ + 1.5aoK + 2B~ } 

The coefficients Pr and Qr are evaluated when U~ 
the coefficients Pi and Q; are equal to zero. 

The stability conditions of equation (25) are 

(26) 

(27) 

= U2 = 0. In this case 

K[g(p2 - Pl ) + 2a0 K2] - t[gFo - 2B2( 1 - / 0 / (  1 + ~)] 

x [ g F o -  B2(1 - # ) / ( i  +#)1 + 1.5%K + 2B 2 = 0  (30) 

We observe that Qr changes sign at 

K 2 = g(pl  -- p2)/Zao (31) 

which is the second harmonic resonance. 

and 

Pr > 0 and Qr < 0 (28) 

The stability can therefore be discussed by dividing the B ~ - K  plane 
into stable and unstable regions. The transition curves are given by the 
vanishing of Pr and Qr. The curves are 

g2FZ(3cro K + B2) + (2croK + B2)Z[gFo -- K2D2(P, + 02 + FoK)] = 0 (29) 
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In what follows, we shall discuss the stability by drawing the curves in 
the B ~ - K  plane for various values of ao. In the following graphs the 
dashed curve represents the linear stability curve, which is assumed to 
divide the plane into a stable region S above the curve and an unstable 
region U below the curve in the linear sense. The shaded regions are newly 
formed regions due to the nonlinear effects. UI is an unstable region, while 
S~ is a stable region. 

Figure 1 represents a system when the influence of surface tension is 
neglected (~r 0 = 0). The graph is divided into stable regions (S, $1) and 
unstable regions (U, U1) according to equations (24) and (29)-(31).  We 
observe that the newly formed region U1 occurs for large values of the field 
and for a band of wavenumbers less than unity, approximately. We observe 
also that the region S~ is characterized by relatively smaller values of  the 
field within a band of values of the field and extends for arbitrary 
wavenumbers. A large value of  the field requires a smaller value of  the 
wavenumber to achieve stability in the region S~. Finally, the curve given 
by equation (31) does not appear because Pl < P2 in our system. 

Figure 2 represents the same system as considered in Fig. 1, but for 
o- 0 = 20 dyne/cm. We observe a similar behavior to that in Fig. 1, but the 
region S~ extends downward because the linear curve is far from the curve 
G = 0 .  

Figure 3 represents the same system as considered in Fig. 1, but having 
the fluids interchanged, F 0 = 0.001 and ao = 1.44 dyne/cm. This means that 
P2 < P~ and consequently the linear curve does not appear in the graph [see 
equation (24)]. Therefore the system is linearly stable. The effect of 
nonlinearity produces a curve showing that an unstable region exists below 

~=O 

0.5 1. ~,~ 1.5 

Fig, 1, The system whose particulars are P2 = 
1.064 g/cm 3, Pl = 0.9142 g/cm 3, g = 981 cm/sec 2, D = 
1.8 x 10- s  cm2/sec, p = 1/6, F 0 = 20 g/cm 2, and % = 
0 dyne/cm. The dashed line represents the linear curve. 
The figure is computed from the relations (24) and 
(29)-(31)  to indicate the transition from stability to 

instability. 
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Fig. 2. The same system as in Fig. 1, but with 
% = 20 dyne/cm. 

451 

~=0 

ff q;=o 

? 
Fig. 3. The same system as in Fig. 1, 16 
but interchanged, Fo =0.00! g/cm 2 and 

% = 1.44 dyne/cm. 

 'q7 o 
0-5 1. ~,~ 1.5 

the curve. Finally, the curve representing second harmonic resonance 
appears at K = 7.14 approximately. 

3.2. The Kelvin-Helmholtz Instability 

Classical Kelv in-Helmhot tz  instability relates to the behavior of  a 
plane interface between moving fluid layers. A basic situation in ferrohy- 
drodynamics is the inviscid wave behavior at tl~e interface between layers of  
magnetized fluids having permeabilities ~ and #2. 

Let us now consider the case where the primary flow state is given by 
two uniform streams moving with uniform velocities U1 and U2 in the x 
direction. 
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Proceeding as in the previous case, we find that the dispersion relation, 

where 

Am = A,,~ + iAmi, m = 1, 2, 3 

We notice that the first three conditions are trivially satisfied. But the 
fourth condition gives, for B 0 > / ~ ,  

~2 g(P2 - Pl)  + p2(U 1 _ U2)2 o.oK (34) 
K 

It is obvious that the system is linearly stable for Bo > B~. The relation 
(34) shows similar behavior as that of the Rayleigh-Taylor instability. The 
Kelvin-Helmholtz instability, however, requires larger values of the mag- 
netic field than those in the Rayleigh-Taylor instability in order to achieve 
stability. The reason is due to the destabilizing nature of the Kelvin- 
Helmholtz flow. 

with complex coefficients, for the Kelvin-Helmholtz problem is 

Ao w3 + A l w  2 + A 2 w  + A 3 = 0 (32) 

where 

Ao = Pl + P 2 +  FoK 

A1 = --Kx {Ao U~ + 2[U~ (p~ + FoK) + P2 U2] } + iK2DAo 

- Kx { U~(p~ + r o K) + P2 U22 + 2 U~ [U~ (Pl + FoK) + P2 U2] } A 2 _  2 

-- gK(p l  - -  P2) -- gFo K2 2 2 --  - B o K x  ao K3-2 iK3D 

z [UI(pl + FoK) + pzU2] 

A3 = KxU~ {gK(p ,  - pe) + gFoKZ + BoKx2 2 + aoK3 

2 2 -- Kx[U~(p~ + FoK) + p2U22]} + i K2 D{K~[U~(p l  + FoK) + p2U~] 

2 2 
- -  [gK(p~ -- P2) + B o K x  + aoK3] } 

It can be easily shown that all the imaginary parts of all the roots of 
equation (32) are negative if and only if (Zahreddine and El Shehawey, 
1988) 

A o > O ,  A I i > O  

A l i ( A o A 3 i  - A l i A z r  ) + A 2 i ( A l r A l i  - AoAzi  ) > 0 
(33) 

[A2,(AlrA~i - AoAz , )  + A~i(AoA3i - A,,A2r)][A3g(A2rA~e - AoA3,) 

-A~zA2iA3r]  - [A3~A~i - A3g(AI~Ati - AoA2i)] 2 > 0 
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A nonlinear analysis of the Kelvin-Helmholtz instability will be 
studied by employing equations (19)-(21), where 

i[  igFo-]-3fl-2 ,., igro T e,+is,=~ 2p2(U,-U2)+~j 

+212p2(UI-U'2) + - ~ - ] L -  ~igF~ -- K----~j-t- K----~] gFo "~. igFo'] 

• 2aoK+ p2(U 2-  U~) +B~ -q tg , 

2 ( gFo'~ 
K P l + p 2 + F o K  KZD2/I 

and 

I igFo] - 1 Qr + iQi = -iK3 2p2(U1- Uz) + - ~ - - /  

2 ~ 2 # -  1 x [gFo + P2(U1- U2) + B~-~-~] 

+ [2p2(U~ - U2) 2 - 1.5aoK - 2B~]~ ) 

(35) 

+ 2p2(UI - Uz)2 + 2B2c~-~+ lll 

(36) 

As mentioned above, the transition curves are given by, accordingly, 
the conditions (20) and (21) 

P .  O = 0, 0r = 0  (37) 

and the curve indicates subharmonic resonance, where P.Q = 
Prar + PiQ~. 

The stability analysis may be understood by studying the stability 
graphs represented by equations (34)-(37). 

Figure 4 represents a system at initially zero surface tension (ao = 0). 
Two unstable regions U1 and U2 appear, which results in reducing the 
nonlinearly stable region S. Thus the effect of nonlinearity is destabilizing 
except at a very small region $1 characterized by small wavenumbers less 
than unity and a limited range of the field. 
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N2 

10 
0.5 

~--o 
II,  

- U ~  PQ:~ 
I__ I J 
1.5 2.5 

K 

Fig. 4. The same system as in Fig. 1, with 
U l = 1 cm/sec and U 2 = 7 crn/sec. The figure is com- 
puted from the relations (34)-(37) to indicate the 

transition curves. 

Figure 5 represents the same system as in Fig. 4, but  a0 = 20 dyne/cm. 
We observe that  the region S~ is enlarged to cover a wide range o f  
wavenumbers  between K = 1.6 to K = 2.2 covering a wider range o f  the 
applied field. Out  this range o f  K the surface tension is destabilizing in the 
nonlinear  sense. Thus  the surface tension plays a dual role. 

Figures 6 - 8  represent a system for three different values o f  B~ and the 
influence o f  gravity is neglected (g = 0). 

~o I ~t,~'~ 
06 I. p ~0 2.s 

K Fig. 5. The Same system as in Fig. 4, but ao -- 20 dyne/cm. 
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Fig, 6. Stability diagram in the U ~ - K  plane, 
where U 1 = U o U~ = 0, g = 0, F o = 0.1, 
ao = 1.44, P2 = 0.914, Pl = 1.064, a n d / ~  = 0. 

30 

10 

2 U 

1.0 
0.2 

"" " "" D--O 

.':~1 I I 
1. 2. K 3. z,. 

Fig. 7. Stability diagram for the same sys- 
tem as comidered in Fig. 6, but with ~2 = 9. 

5O 

U 2 U 
. . . .  . . . .  - -  . - -  

o.2 ,. 2. K 3. ~. 

D = O  

D=o 

Fig. 8. Stability diagram for the same system as 
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In this case Pr = Q~ = 0, and equation (19) is reduced to the nonlinear 
Schr6dinger equation, 

�9 c3A 02A 
+ e,-zz-~,_~ + QiA2A = 0 (38) 

og -  

where 

Pi = {4p~(U~ - U2)2[~o - U~(p, + 02 + FoK)IK] 

+ (4/K)UlP2(U~ - U2)(p 1 -q- P2 "q- roK)[2~roK + p2(U 2 - U{) + / ~ ]  

- (p, + p= + VoK)[ZaoK + pz(U~ - U~) + n 2 ] 2 / K } / [ 8 p 3 ( V i  - U2) 31 

and 

Q, = [K3/p2(U~- U;)] {Lo2(U,- U 2 ) 2 + / ~ ( ~  - 1)/(u + 1)]2/(2,roK) 

+ ~ aoK + / ~  - p2(U1 - -  U2) 2} 

It is well known that the solutions of equation (38) are unstable if 
P~Q~ > 0. Therefore, we observe that the unstable regions (U, U1) decrease 
with the increase of the magnetic field. We also observe that the region S 
increases with the increase of the field, while the new stable region S~ 
decreases with the increase of the field. 

4. STABILITY OF SOLITARY WAVES 

The analysis of this section will be based on equation (19) when the 
surface tension is constant. In this case, the coefficients Pr and Qr are equal 
to zero. Therefore, the solutions of this equation are stable if and only if 
PiQi < 0. The parameters Pi and Qi can take positive or negative values�9 

The simplest localized solution to equation (19) for PeQe > 0 is called 
an envelope soliton and is expressed as 

A = 21/2 sech[~( - 2 o Q,/2Pl) 1/2] exp( - iflo'r) (39) 

where 2o is constant and D.o = 0.520Qt. 
The stability of the envelope soliton was first studied by Zakharov 

(1968), who established that the solution is unstable. This result was 
generalized by Zakharov and Rubenchik (1974) by studying perturbations 
about marginally stable states. 

For PiQ~ < 0, the solution to equation (19) can be written in the form 

I / I  tg. p/2 \-11/2 
A =  '21- sech2/l_ _l Z :]I exp[iv(r (40) 

\ l z r ,  i / i  
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with 

and 

, 2  (22 2 2 
= - -  2 m i n ) / / ~  ~--- 1 

# t_anh(lQi/2P,11/22#O )~ 
v = sin - - 1  [ 1 -- # 2 sech2(lQi/2P, 11/22/zr 1/2j - f~t 

where f~ = 0.522(/~ 2 -  3) is the nonlinear frequency shift. The above solu- 
tion represents an envelope hole. Compared with the envelope soliton, the 
envelope hole has an additional independent parameter #, which designates 
the depth of  modulation. When/~ = 1, 2r, ia reaches zero and the solution 
can be expressed as an envelope shock. 

Studies of solitary waves are well known, and in particular the solution 
corresponding to that given by equation (14). It is known that an initial 
wave packet of an arbitrary envelope will disintegrate into a number of  
envelope solitons and oscillatory tail. Moreover, the solutions of equation 
(19) for periodic boundary conditions satisfy the Fermi -Pas ta -Ulam 
recurrence phenomenon (Newell, 1983). This means that a solitary wave 
reaches a maximum modulation and eventually returns to an unmodulated 
state. 

5. CONCLUSIONS 

We applied the multiple-scales method to the Rayleigh-Taylor and 
Kelvin-Helmholtz stability problems of two incompressible, inviscid, mag- 
netic fluids, taking into account the surface tension effect, to derive a linear 
and a nonlinear evolution of the modulational instability. 

For t h e  case of the linear Rayleigh-Taylor stability problem, it is 
found that both the surface tension and the magnetic field are strictly 
stabilizing, while the adsorption has no effect. Also, the ratio of the 
magnetic permeability has no effect in the sense that it does not matter 
which of the fluids has a larger permeability constant. 

For the case of the linear Kelvin-Helmholtz stability problem, how- 
ever, the classical stability criterion is found to be substantially modified 
due to the effect of  the tangential field. When U1 = U2 = U, the real part of 
w is the same as that of  the Rayleigh-Taylor case, except for an additive 
term Kx U to take care of the streaming of the fluid. Thus when I U1 - U2I 
is small, the behavior of the flow system differs slightly from the Rayleigh- 
Taylor case. 

In the nonlinear theory, we obtain a Ginzburg-Landau equation for 
the Kelvin-Helmholtz model and a nonlinear diffusion equation for the 
Rayleigh-Taylor model to describe the behavior of the disturbed system 
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and discuss their stability conditions. From these equations and their 
stability conditions, we notice that the nonlinear interaction coefficient 
depends on the sign of # 1 -  #2- Therefore the stability criterion will 
strongly depend on whether the lower fluid or the upper fluid has a greater 
magnetic permeability. The results are in contrast with the linear theory, 
where the sign of #l - #2 has no implications for the stability criterion. 

A similar phenomenon was Observed in the surface instability of 
dielectric fluids in vertical electric fields. Owing to the nonlinear effects, 
Mohamed and El Shehawey (1983) found that the instability depends on 
the dielectric constant difference. 

The tangential field plays a dual role in the stability criterion of  the 
system. The results are illustrated in the stability charts of  the system. It is 
found that under certain conditions, the destabilizing effect of streaming 
can be suppressed by a suitable choice of the field and vice versa. 
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